Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
ACS Chem Biol ; 18(5): 1180-1191, 2023 05 19.
Article in English | MEDLINE | ID: covidwho-2304842

ABSTRACT

SARS-CoV-2 viruses engage ACE2 as a functional receptor with their spike protein. The S1 domain of the spike protein contains a C-terminal receptor binding domain (RBD) and an N-terminal domain (NTD). The NTD of other coronaviruses includes a glycan binding cleft. However, for the SARS-CoV-2 NTD, protein-glycan binding was only observed weakly for sialic acids with highly sensitive methods. Amino acid changes in the NTD of variants of concern (VoC) show antigenic pressure, which can be an indication of NTD-mediated receptor binding. Trimeric NTD proteins of SARS-CoV-2, alpha, beta, delta, and omicron did not reveal a receptor binding capability. Unexpectedly, the SARS-CoV-2 beta subvariant strain (501Y.V2-1) NTD binding to Vero E6 cells was sensitive to sialidase pretreatment. Glycan microarray analyses identified a putative 9-O-acetylated sialic acid as a ligand, which was confirmed by catch-and-release ESI-MS, STD-NMR analyses, and a graphene-based electrochemical sensor. The beta (501Y.V2-1) variant attained an enhanced glycan binding modality in the NTD with specificity toward 9-O-acetylated structures, suggesting a dual-receptor functionality of the SARS-CoV-2 S1 domain, which was quickly selected against. These results indicate that SARS-CoV-2 can probe additional evolutionary space, allowing binding to glycan receptors on the surface of target cells.


Subject(s)
COVID-19 , Sialic Acids , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , N-Acetylneuraminic Acid
2.
JACS Au ; 3(4): 1185-1195, 2023 Apr 24.
Article in English | MEDLINE | ID: covidwho-2304362

ABSTRACT

The emergence of new SARS-CoV-2 variants and the dangers of long-covid necessitate the development of broad-acting therapeutics that can reduce viral burden. SARS-CoV-2 employs heparan sulfate (HS) as an initial cellular attachment factor, and therefore, there is interest in developing heparin as a therapeutic for SARS-CoV-2. Its use is, however, complicated by structural heterogeneity and the risk of causing bleeding and thrombocytopenia. Here, we describe the preparation of well-defined heparin mimetics by a controlled head-to-tail assembly of HS oligosaccharides having an alkyne or azide moiety by copper-catalyzed azide-alkyne cycloaddition (CuAAC). Alkyne- and azide-containing sulfated oligosaccharides were prepared from a common precursor by modifying an anomeric linker with 4-pentynoic acid and by enzymatic extension with an N-acetyl-glucosamine having an azide moiety at C-6 (GlcNAc6N3), respectively, followed by CuAAC. The process of enzymatic extension with GlcNAc6N3 followed by CuAAC with the desired alkyne-containing oligosaccharides could be repeated to give compounds composed of 20 and 27 monosaccharides, respectively. The heparin mimetics could inhibit the binding of the SARS-CoV-2 spike or RBD to immobilized heparin or to Vero E6 cells. The inhibitory potency increased with increasing chain length, and a compound composed of four sulfated hexasaccharides linked by triazoles had a similar potency as unfractionated heparin. Sequence analysis and HS microarray binding studies with a wide range of RBDs of variants of concern indicate that they have maintained HS-binding capabilities and selectivities. The heparin mimetics exhibit no or reduced binding to antithrombin-III and platelet factor 4, respectively, which are associated with side effects.

3.
ACS Infect Dis ; 8(5): 1041-1050, 2022 05 13.
Article in English | MEDLINE | ID: covidwho-1788265

ABSTRACT

A panel of O-acetylated N-glycolylneuraminic acid oligosaccharides has been prepared by diversification of common synthetic precursors by regioselective de-O-acetylation by coronaviral hemagglutinin-esterase (HE) combined with C7-to-C9 acetyl ester migration. The resulting compound library was printed on streptavidin-coated glass slides to give a microarray to investigate receptor binding specificities of viral envelope glycoproteins, including spike proteins and HEs from animal and human coronaviruses. It was found that the binding patterns of the viral proteins for N-glycolylated sialosides differ considerable from those of the previously synthesized N-acetylated counterparts. Generally, the spike proteins tolerate N-glycolyl modification, but selectivities differ among viruses targeting different hosts. On the other hand, the lectin domain of the corresponding HEs showed a substantial decrease or loss of binding of N-glycolylated sialosides. MD simulations indicate that glycolyl recognition by HE is mediated by polar residues in a loop region (109-119) that interacts with the 5-N-glycolyl moiety. Collectively, the results indicate that coronaviruses have adjusted their receptor fine specificities to adapt to the sialoglycome of their host species.


Subject(s)
Coronavirus Infections , Coronavirus , Animals , Glycoproteins , Neuraminic Acids , Oligosaccharides , Spike Glycoprotein, Coronavirus
4.
Trends Immunol ; 43(4): 296-308, 2022 04.
Article in English | MEDLINE | ID: covidwho-1763781

ABSTRACT

Guillain-Barré syndrome (GBS) is a rapidly progressive, monophasic, and potentially devastating immune-mediated neuropathy in humans. Preceding infections trigger the production of cross-reactive antibodies against gangliosides concentrated in human peripheral nerves. GBS is elicited by at least five distinct common bacterial and viral pathogens, speaking to the notion of polymicrobial disease causation. This opinion emphasizes that GBS is the best-supported example of true molecular mimicry at the B cell level. Moreover, we argue that mechanistically, single and multiplexed microbial carbohydrate epitopes induce IgM, IgA, and IgG subclasses in ways that challenge the classic concept of thymus-dependent (TD) versus thymus-independent (TI) antibody responses in GBS. Finally, we discuss how GBS can be exemplary for driving innovation in diagnostics and immunotherapy for other antibody-driven neurological diseases.


Subject(s)
Guillain-Barre Syndrome , Molecular Mimicry , Antibody Formation , Autoantibodies , Gangliosides , Guillain-Barre Syndrome/etiology , Guillain-Barre Syndrome/therapy , Humans , Immunoglobulin G
5.
PLoS Pathog ; 18(3): e1010340, 2022 03.
Article in English | MEDLINE | ID: covidwho-1731607

ABSTRACT

SARS-CoV-2 attaches to angiotensin-converting enzyme 2 (ACE2) to gain entry into cells after which the spike protein is cleaved by the transmembrane serine protease 2 (TMPRSS2) to facilitate viral-host membrane fusion. ACE2 and TMPRSS2 expression profiles have been analyzed at the genomic, transcriptomic, and single-cell RNAseq levels. However, transcriptomic data and actual protein validation convey conflicting information regarding the distribution of the biologically relevant protein receptor in whole tissues. To describe the organ-level architecture of receptor expression, related to the ability of ACE2 and TMPRSS2 to mediate infectivity, we performed a volumetric analysis of whole Syrian hamster lung lobes. Lung tissue of infected and control animals was stained using antibodies against ACE2 and TMPRSS2, combined with SARS-CoV-2 nucleoprotein staining. This was followed by light-sheet microscopy imaging to visualize their expression and related infection patterns. The data demonstrate that infection is restricted to sites containing both ACE2 and TMPRSS2, the latter is expressed in the primary and secondary bronchi whereas ACE2 is predominantly observed in the bronchioles and alveoli. Conversely, infection completely overlaps where ACE2 and TMPRSS2 co-localize in the tertiary bronchi, bronchioles, and alveoli.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Animals , Cricetinae , Lung/metabolism , Mesocricetus , SARS-CoV-2
6.
Nat Chem Biol ; 18(1): 81-90, 2022 01.
Article in English | MEDLINE | ID: covidwho-1510604

ABSTRACT

Emerging evidence suggests that host glycans influence severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we reveal that the receptor-binding domain (RBD) of the spike (S) protein on SARS-CoV-2 recognizes oligosaccharides containing sialic acid (Sia), with preference for monosialylated gangliosides. Gangliosides embedded within an artificial membrane also bind to the RBD. The monomeric affinities (Kd = 100-200 µM) of gangliosides for the RBD are similar to another negatively charged glycan ligand of the RBD proposed as a viral co-receptor, heparan sulfate (HS) dp2-dp6 oligosaccharides. RBD binding and infection of SARS-CoV-2 pseudotyped lentivirus to angiotensin-converting enzyme 2 (ACE2)-expressing cells is decreased following depletion of cell surface Sia levels using three approaches: sialyltransferase (ST) inhibition, genetic knockout of Sia biosynthesis, or neuraminidase treatment. These effects on RBD binding and both pseudotyped and authentic SARS-CoV-2 viral entry are recapitulated with pharmacological or genetic disruption of glycolipid biosynthesis. Together, these results suggest that sialylated glycans, specifically glycolipids, facilitate viral entry of SARS-CoV-2.


Subject(s)
Glycolipids/metabolism , SARS-CoV-2/metabolism , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , Humans
7.
Nat Chem ; 13(5): 496-503, 2021 05.
Article in English | MEDLINE | ID: covidwho-1145994

ABSTRACT

The transmission of viruses from animal reservoirs to humans poses major threats to public health. Preparedness for future zoonotic outbreaks requires a fundamental understanding of how viruses of animal origin have adapted to binding to a cell surface component and/or receptor of the new host. Here we report on the specificities of human and animal viruses that engage with O-acetylated sialic acid, which include betacoronaviruses, toroviruses and influenza C and D viruses. Key to these studies was the development of a chemoenzymatic methodology that can provide almost any sialate-acetylation pattern. A collection of O-acetylated sialoglycans was printed as a microarray for the determination of receptor specificity. These studies showed host-specific patterns of receptor recognition and revealed that three distinct human respiratory viruses uniquely bind 9-O-acetylated α2,8-linked disialoside. Immunofluorescence and cell entry studies support that such a glycotope as part of a ganglioside is a functional receptor for human coronaviruses.


Subject(s)
N-Acetylneuraminic Acid/chemistry , Respiratory Tract Infections/virology , Viruses/pathogenicity , Humans , Transfection
8.
ACS Cent Sci ; 7(6): 1009-1018, 2021 Jun 23.
Article in English | MEDLINE | ID: covidwho-1313538

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is causing an unprecedented global pandemic demanding the urgent development of therapeutic strategies. Microarray binding experiments, using an extensive heparan sulfate (HS) oligosaccharide library, showed that the receptor binding domain (RBD) of the spike of SARS-CoV-2 can bind HS in a length- and sequence-dependent manner. A hexasaccharide composed of IdoA2S-GlcNS6S repeating units was identified as the minimal binding epitope. Surface plasmon resonance showed the SARS-CoV-2 spike protein binds with a much higher affinity to heparin (K D = 55 nM) compared to the RBD (K D = 1 µM) alone. It was also found that heparin does not interfere in angiotensin-converting enzyme 2 (ACE2) binding or proteolytic processing of the spike. However, exogenous administered heparin or a highly sulfated HS oligosaccharide inhibited RBD binding to cells. Furthermore, an enzymatic removal of HS proteoglycan from physiological relevant tissue resulted in a loss of RBD binding. The data support a model in which HS functions as the point of initial attachment allowing the virus to travel through the glycocalyx by low-affinity high-avidity interactions to reach the cell membrane, where it can engage with ACE2 for cell entry. Microarray binding experiments showed that ACE2 and HS can simultaneously engage with the RBD, and it is likely no dissociation between HS and RBD is required for binding to ACE2. The results highlight the potential of using HS oligosaccharides as a starting material for therapeutic agent development.

9.
PLoS Pathog ; 17(2): e1009282, 2021 02.
Article in English | MEDLINE | ID: covidwho-1069635

ABSTRACT

Receptor binding studies on sarbecoviruses would benefit from an available toolkit of recombinant spike proteins, or domains thereof, that recapitulate receptor binding properties of native viruses. We hypothesized that trimeric Receptor Binding Domain (RBD) proteins would be suitable candidates to study receptor binding properties of SARS-CoV-1 and -2. Here we created monomeric and trimeric fluorescent RBD proteins, derived from adherent HEK293T, as well as in GnTI-/- mutant cells, to analyze the effect of complex vs high mannose glycosylation on receptor binding. The results demonstrate that trimeric, complex glycosylated proteins are superior in receptor binding compared to monomeric and immaturely glycosylated variants. Although differences in binding to commonly used cell lines were minimal between the different RBD preparations, substantial differences were observed when respiratory tissues of experimental animals were stained. The RBD trimers demonstrated distinct ACE2 expression profiles in bronchiolar ducts and confirmed the higher binding affinity of SARS-CoV-2 over SARS-CoV-1. Our results show that complex glycosylated trimeric RBD proteins are attractive to analyze sarbecovirus receptor binding and explore ACE2 expression profiles in tissues.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Protein Multimerization , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Animals , Chlorocebus aethiops , Dogs , Glycosylation , HEK293 Cells , Humans , Madin Darby Canine Kidney Cells , Mesocricetus , Mice , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
10.
Proc Natl Acad Sci U S A ; 117(41): 25759-25770, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-807358

ABSTRACT

Human coronaviruses OC43 and HKU1 are respiratory pathogens of zoonotic origin that have gained worldwide distribution. OC43 apparently emerged from a bovine coronavirus (BCoV) spillover. All three viruses attach to 9-O-acetylated sialoglycans via spike protein S with hemagglutinin-esterase (HE) acting as a receptor-destroying enzyme. In BCoV, an HE lectin domain promotes esterase activity toward clustered substrates. OC43 and HKU1, however, lost HE lectin function as an adaptation to humans. Replaying OC43 evolution, we knocked out BCoV HE lectin function and performed forced evolution-population dynamics analysis. Loss of HE receptor binding selected for second-site mutations in S, decreasing S binding affinity by orders of magnitude. Irreversible HE mutations led to cooperativity in virus swarms with low-affinity S minority variants sustaining propagation of high-affinity majority phenotypes. Salvageable HE mutations induced successive second-site substitutions in both S and HE. Apparently, S and HE are functionally interdependent and coevolve to optimize the balance between attachment and release. This mechanism of glycan-based receptor usage, entailing a concerted, fine-tuned activity of two envelope protein species, is unique among CoVs, but reminiscent of that of influenza A viruses. Apparently, general principles fundamental to virion-sialoglycan interactions prompted convergent evolution of two important groups of human and animal pathogens.


Subject(s)
Coronavirus/physiology , Hemagglutinins, Viral/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Fusion Proteins/genetics , Virion/metabolism , Animals , Biological Evolution , Cell Line , Coronavirus/genetics , Coronavirus/metabolism , Coronavirus Infections/virology , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/metabolism , Coronavirus OC43, Human/physiology , Coronavirus, Bovine/genetics , Coronavirus, Bovine/metabolism , Coronavirus, Bovine/physiology , Hemagglutinins, Viral/chemistry , Hemagglutinins, Viral/metabolism , Humans , Lectins/genetics , Lectins/metabolism , Mice , Mutation , Protein Binding , Protein Domains , Receptors, Virus/metabolism , Selection, Genetic , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Virion/genetics , Virus Attachment , Virus Release
11.
Blood Adv ; 4(13): 2967-2978, 2020 07 14.
Article in English | MEDLINE | ID: covidwho-625455

ABSTRACT

Thrombocytopenia is a common complication of influenza virus infection, and its severity predicts the clinical outcome of critically ill patients. The underlying cause(s) remain incompletely understood. In this study, in patients with an influenza A/H1N1 virus infection, viral load and platelet count correlated inversely during the acute infection phase. We confirmed this finding in a ferret model of influenza virus infection. In these animals, platelet count decreased with the degree of virus pathogenicity varying from 0% in animals infected with the influenza A/H3N2 virus, to 22% in those with the pandemic influenza A/H1N1 virus, up to 62% in animals with a highly pathogenic A/H5N1 virus infection. This thrombocytopenia is associated with virus-containing platelets that circulate in the blood. Uptake of influenza virus particles by platelets requires binding to sialoglycans and results in the removal of sialic acids by the virus neuraminidase, a trigger for hepatic clearance of platelets. We propose the clearance of influenza virus by platelets as a paradigm. These insights clarify the pathophysiology of influenza virus infection and show how severe respiratory infections, including COVID-19, may propagate thrombocytopenia and/or thromboembolic complications.


Subject(s)
Blood Platelets/virology , Influenza A virus/pathogenicity , Influenza, Human/complications , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Thrombocytopenia/etiology , Animals , Blood Platelets/metabolism , Blood Platelets/pathology , Disease Models, Animal , Ferrets , Host-Pathogen Interactions , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/physiology , Influenza A virus/physiology , Influenza, Human/metabolism , Influenza, Human/pathology , Influenza, Human/virology , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Thrombocytopenia/metabolism , Thrombocytopenia/pathology , Thrombocytopenia/virology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL